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Abstract—Modern High Performance Computing (HPC)
applications process very large amounts of data. A critical
research challenge lies in transporting input data to the HPC
center from a number of distributed sources, e.g., scientific
experiments and web repositories, etc., and offloading the result
data to geographically distributed, intermittently available end-
users, often over under-provisioned connections. Such end-
user data services are typically performed using point-to-point
transfers that are designed for well-endowed sites and are
unable to reconcile the center’s resource usage and users’
delivery deadlines, unable to adapt to changing dynamics in
the end-to-end data path and are not fault-tolerant. To over-
come these inefficiencies, decentralized HPC data services are
emerging as viable alternatives. In this paper, we develop and
enhance such distributed data services by designing CATCH, a
Cloud-based Adaptive data Transfer serviCe for HPC. CATCH
leverages a bevy of cloud storage resources to orchestrate a
decentralized data transport with fail-over capabilities. Our
results demonstrate that CATCH is a feasible approach, and
can help improve the data transfer times at the HPC center
by as much as 81.1% for typical HPC workloads.

Keywords-HPC data management, data-staging, end-user
data delivery, Cloud for HPC, HPC center serviceability

I. INTRODUCTION

A. Problem Statement

High Performance Computing (HPC) is facing an expo-

nential growth in job dataset sizes. Terabytes of reduced,

result and snapshot data from experimental facilities (e.g.,

Spallation Neutron Source [1], Large Hadron Collider [2]),

collaborations (e.g., Earth System Grid [3]), state-of-the-art

cyber-infrastructure (e.g., TeraGrid [4]) and supercomputers

(e.g., Jaguar [5], Kraken [6]) needs to be delivered to end-

users or other destinations for local interpretation of results,

visualization or for further analysis. Several applications,

running on the Jaguar machine, are already producing tens

of terabytes of data. Similarly, large input datasets are

required to be staged into HPC centers from multiple end-

user locations for consumption by supercomputing jobs.

End-user data services are often an afterthought in multi-

million dollar HPC centers and cyber-infrastructure projects,

leading to their sub-optimal use. An elegant data delivery

scheme can have a profound impact on user experience

and also improve HPC center serviceability. Extant, point-

to-point data delivery techniques, commonly used in HPC

centers, are unable to meet user delivery, job startup and

scratch storage space purge deadlines, unable to adapt to

changing dynamics in the end-to-end data path and are not

fault-tolerant. Further, these transfer tools are only optimized

for transfers between two already well-endowed sites [7]. In

contrast, end-user data delivery involves providing access

to the data at the user’s desktop. It cannot be ignored as

a “last-mile” issue. These inefficiencies can be prohibitive

to sustaining high performance. In this paper, we aim to

mitigate such lack of integrated data orchestration between

HPC centers and end-users.

B. CATCH Overview

We present CATCH, a cloud-based adaptive data transfer

service for HPC, that is able to seamlessly absorb the

terabytes of data emanating from simulations or observations

and move it closer to either the end-user or the HPC center.

CATCH enables the offload of a large job’s output data from

an HPC center’s parallel file system (PFS), scratch space,

to cloud storage locations. To improve performance and

avoid HPC center storage purge deadlines the data can be

dynamically split and written to many cloud storage targets.

Once the data is transferred to the cloud, the HPC center’s

storage is freed, which leaves the center less burdened and

the end-user data safely stored in the managed cloud infras-

tructure at low cost. Meanwhile, geographically distributed

researchers can access the data from the cloud storage for

further analysis or visualization by staging it to their local

storage. The data can stay cached in the cloud as long the

users are willing to pay the costs of doing so (typically much

less than the equivalent cost of storing data on center scratch

space), enabling quick access for collaborators. Similarly,

input data can be stored on cloud resources closer to the

HPC center, thus enabling the center to pull the data from

the cloud when needed.

C. Contributions

CATCH provides a cloud storage framework for HPC,

which utilizes proactive staging-in and offloading of data to

cloud storage locations so as to have the input data available

at the scratch storage — from multiple input sources — just

before the job is about to run, and to offload output data

from scratch to cloud as soon as the data is available. The



goal is to reduce the amount of time that data spends on the

scratch space. Specifically, our contributions are:

Staged and decentralized offloading: We utilize a combi-

nation of both a staged as well as a decentralized delivery

scheme for job data. This is a fundamentally different way

of delivering job data in HPC centers and is a non-trivial

endeavor. Compared to a direct transfer, our techniques have

the added benefits of employing cloud storage nodes to

provide resilience in the face of end-resource failure and

the exploitation of available orthogonal bandwidth in the

end-to-end data path.

Integration with Cloud Services: We integrate CATCH

with cloud resources exported by Windows Azure. CATCH

seamlessly interfaces with existing cloud services, trans-

ferring data to/from the cloud, working with essentially

a black box. We adopt a novel variation to the use of

intermediate nodes that differs from how they are used in

most decentralized systems. The nodes participating in the

transfer are in fact cloud resources, with specified reliability

guarantees, thereby eliminating the fundamental concern

of data delivery through a set of unreliable nodes. We

demonstrate ways in which these nodes can be specified

and used within a scientific collaboration.

Integration with FUSE: We have exported our end-user

data delivery service through the file system abstraction

provided by FUSE [8]. End-user programs can thus write

and read to cloud storage and move data through them using

standard file system operations.

Integration with real-world tools: Our solutions are devel-

oped in the context of real-world tools that are commonly

used in HPC, such as PBS [9] and NWS [10].

Detailed evaluation: Finally, we have evaluated CATCH

using both a Windows Azure-based implementation and

simulations driven by the Jaguar supercomputer job logs.

Our approach optimizes precious scratch space usage and

minimizes the exposure of input data at center storage.

Results shows as much as 81.1% reduction in average

transfer times under CATCH compared to direct transfers,

and reduced exposure to scratch failures: 75.2% reduction

in wait time on scratch, and 2.43% reduction in usage/hour.

II. BACKGROUND AND ENABLING TECHNOLOGIES

In this section, we provide relevant background and

describe the enabling technologies for CATCH.

A. A Case for End-User Data Services

We now describe the current methods for managing end-

user data and their shortcomings, why end-user data services

are critical to HPC center serviceability, and how the cloud

can help facilitate such services.

Data Offloading: Result data from supercomputer jobs

needs to be offloaded to end-users for local visualization

or to another compute component of the distributed job

workflow. This needs to be accomplished in a timely fashion

both to meet a delivery constraint as well as to prevent

the result data from getting purged from the HPC center

scratch space that is typically reserved for currently running

or soon to run jobs. The lack of a sophisticated solution for

result-data delivery affects not only end-user service, but

also center operations. The output data of a supercomputing

job is the result of a multi-hour—even several days’—run.

A delayed offload renders output-data vulnerable to center

purge policies. The loss of output-data leads to wasted user

time allocation that is very precious and obtained through

rigorous peer-review. Thus, a timely end-user data offload

can help optimize both center as well as user resources.

Data Staging: The inverse of delivering data to the

end-user is to stage the data from a source location to

an HPC center. Modern applications usually encompass

complex analysis, which can involve staging large input data

from observations or experiments. The data can originate

from multiple sources ranging from end-user sites, remote

Internet repositories, collaborating sites and other clusters

that run pieces of the job workflow.

Once submitted, the job waits in a batch queue at the HPC

center until it is selected for running, while the input data

“waits” on the scratch space. In the best case when the data is

staged at job submission, the input data spends the same time

on the scratch as the job turn-around time, i.e., (wall time +

wait time). In the worst case, which is more common, the

data waits longer as users conservatively (manually) stage it

in much earlier than job submission. Thus, there is the need

for an end-user data service to stage the data just-in-time so

it is able to minimize resource consumption and exposure

of data to failure.

From the above usecases, we can state the problem as:

Offload by a specified deadline to avoid being purged; Or,

Deliver by a specified deadline to ensure continuity in the job

workflow. This, coupled with the observation that the cloud

provides a number of distributed storage resources, naturally

leads to the question of how the cloud can be employed

to mitigate the data delivery challenges in HPC.

Previous Work: We have designed a framework [11],

[12], [13] for the timely, decentralized offload and staging of

application data to mitigate the above issues. We focused on

utilizing a group of user-specified intermediate nodes, from

collaborators working on the same problem, arranged in a

peer-to-peer overlay, to help HPC data transfer by providing

multiple data flow paths, thereby exploiting orthogonal band-

width between the end-users and the center. The collaborator

sites provide for dynamically adjusting the data transfer by

allowing data to be split and sent to multiple sites simulta-

neously, i.e, vary the fan-out. The sites can themselves be

arranged in multiple tiers, so as to provide multiple data flow

paths. Most importantly, such intermediate storage decouples

the transferring of data from/to HPC center to/from end-user

sites, thus addressing the issue of end-user site availability

during point-to-point transfers. Our decentralized delivery



also factors in deadlines: i.e., for a timely data offload from

the center or a timely staging to coincide with job-startup

by synchronizing with center purge policies and job batch

queue prediction services.

A significant drawback of our previous approach is the ab-

solute reliance on user-specified intermediate nodes, which

can be quite volatile, unreliable, and scarce in all but

very large collaborative projects. Therefore, a reliable and

timely data transport cannot be guaranteed through such a

distributed, transient substrate. To address this, we propose

to use cloud storage resources as intermediate storage for a

decentralized data offload and staging.

B. Using the Cloud for End-User Data Services

Cloud computing is emerging as a viable approach for en-

abling fast time-to-solution for small enterprises that benefit

from the cloud’s pay-per-use utility computing model. The

cloud supports automatic resource management, protection

against data loss, and ubiquitous availability.

Cloud as Intermediate Storage for Decentralized Data

Transport: A main challenge in developing a distributed

HPC center-user data delivery framework, as envisioned by

CATCH, is the need for a bevy of geographically distributed

storage nodes to facilitate data flow. To this end, we aim

to utilize the cloud to provide intermediate storage on the

path from the end-user to the HPC center, so as to facilitate

efficient data transfers.

A number of cloud features make it suitable for CATCH.

First, the cloud provides scalable, distributed, and always

available storage. For example Windows Azure allows blobs

(binary large objects), each of up to 50 GB at present [14].

Thus, a wide variety of HPC applications can be supported

by the resulting data services. From an HPC center’s stand-

point, data can be stored in the cloud and only moved to

expensive on-site scratch storage when needed, dramatically

reducing the total amount of data HPC centers must store.

From the end-users’ perspective, data could be handed-off to

the cloud, which frees the users from explicit data manage-

ment that is typically required when using HPC resources.

Second, the cloud can provide very high data reliability

guarantees through replication, geographically distributed

storage, and active fault ramifications. This relieves both

HPC centers and end users from expensive data redundancy

improving operations. Third, data can be strategically placed

in the cloud, i.e., relatively close to an HPC center or end-

user, yielding potentially higher transfer rates and lower

latency when the data is needed. This is further enhanced

if the cloud service provider supports Content Distribution

Networks (CDNs). Finally, the cost of utilizing cloud storage

resources is very low compared to the multi-million dollar

storage systems at HPC centers. The conjoined use of HPC

and cloud storage can increase the serviceability of the HPC

scratch storage. This is a very attractive solution, given that

Center Stub Client Stub

Client
HPC

Center

Cloud
Manager

(Cloud FS)

Figure 1. The main software components of CATCH.

HPC acquisitions are typically done on the basis of FLOPS/$

and I/O sub-systems are always resource constrained.

Azure Data Services: We have used the Windows

Azure platform [14] for building CATCH. The following

Azure features dictated our decision. (i) Azure provides

a large scalable storage space for users, which matches

typical HPC application needs: 100 TB per storage account,

and up to five storage accounts per Azure subscription.

(ii) The Azure storage service provides SLAs for up-time

and correctness, and it is highly-available. (iii) Azure also

provides CDN capability (currently in testing as Community

Technology Preview), which can be leveraged to build

efficient data placement that improves overall observable

data transfer rates. (iv) The cost of Azure services is low,

e.g., storage costs $0.15 per GB per Month, and thus feasible

for our intended use of cloud storage in HPC data transport.

III. DESIGN

Cloud storage locations provide the foundation for sup-

porting a decentralized data delivery service, e.g., for data

offloading and staging, for HPC end-users. As stated earlier,

the dynamic nature of the interconnects between end-user

sites and the HPC center can make the amount of time

it takes for a direct transfer to complete vary significantly.

CATCH uses cloud storage to provide robust and efficient

resources, which can be used to create on-the-fly per-

collaboration/user infrastructure to support the decentralized

data delivery. This helps to address the issues of purge dead-

lines, thus releasing center scratch storage and seamlessly

moving data closer to end-users.

A. Design Overview

CATCH has three main software components as shown

in Figure 1: client stub to allow for interfacing with cloud

resources; cloud manager (e.g., a cloud file system) to

interact and affect how data is stored and moved in the

cloud; and center stub to provide a transparent interface to

accessing and storing data on cloud resources.

A user who wants to run an application at the HPC center,

first queries the center stub to get an estimate of when the

user’s job will be scheduled. Based on this estimate and the

size of the input data, the client stub then determines whether

a direct transfer would be sufficient. If not, the user attempts

to utilize the cloud resources to facilitate a decentralized data
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Figure 2. The data flow path from the HPC center to the end-user
site. The intermediate resources are represented by hexagons. The
gray squares represent software hooks/APIs that CATCH uses to
control the data flow.

transfer. Since storage in the cloud is cheaper compared to

storage at the HPC center, such a decentralized transfer can

be initiated much earlier than a direct transfer. HPC center

storage is precious and user data is constantly purged to

make room for data from new incoming jobs. Thus, the

end-user site utilizes our software hooks to transparently

move the data into the cloud. Next, we either count on

the cloud internals or our pre-staging interface, through the

cloud manager, to move the data to cloud sites closer to

the HPC center. When the job is about to be scheduled,

the center stub pulls the data from the cloud to the center

PFS, thus completing the transfer. Conversely, when the job

finishes (or have intermediate data for the user), the center

stub pushes the data onto the cloud resources. The client can

then retrieve this data when and how it wishes. This design

essentially decouples the center-side and client-side transfers

and provides flexibility and fault-tolerance. Figure 2 shows

the high-level flow of data in CATCH.

We have developed detailed models for building end-

user data services with ad hoc resources in our previous

work [11], [13]. In CATCH, we overcome all of the issues

arising from such ad hoc intermediate sites (discussed in

Section II), by leveraging cloud resources and integrating

the cloud model with HPC data movement. However, the

fundamental issues of node selection and meeting delivery

deadlines are very similar, thus we leverage our previous

work in CATCH to this end.

B. Cloud Data Interface

The cloud provides a suitable platform for developing and

expanding end-user data delivery services. We have built our

software using the Azure [14] platform. In the following, we

discuss several possible heuristics for the HPC data transfer

system to interact efficiently with the cloud.

1) Straw-man Approach: The first approach that we con-

sider is a simple use of cloud resources for storing HPC data.

This straw-man approach is illustrated in Figure 3(a). Here,

end-users push their job’s data to the cloud, which can then

be retrieved by an HPC center before the end-users job will

run. Upon job completion, the HPC center can take the result

data and store it in the cloud for the end-user to retrieve as

necessary. This method uses the standard Azure API and

relies entirely on the cloud for performance. For example, if

the cloud either stores or moves the data closer to the HPC

center, better performance would be observed. However,

if data is stored at arbitrary locations, no performance

improvement guarantees can be made. Nonetheless, this

approach is the key step in decoupling the end-users from the

HPC center, thus allowing the end-users to be intermittent

and freeing them from issues of data retransmission, and

resulting job rescheduling.

2) Utilizing Storage Regions: The main drawback of

the Straw-man is that it does not exploit the data flow

information, i.e., where and when a data item is needed,

which is available in HPC job scripts. Moreover, typical

HPC data, especially input data is stored once by the end-

user and retrieved once by the HPC center, thus giving

cloud management little opportunity to identify data access

hotspots and migrate data to resources closer to where the

data is being accessed. Thus, Straw-man cannot ensure that

cloud-enabled decentralized data transfer would yield better

transfer performance compared to a point-to-point transfer.

However, transfer rate performance gains are desirable when

retrieving data at the HPC center as delays may cause the as-

sociated job to be rescheduled, consequently increasing job

turn-around time and affecting overall center serviceability.

To address these issues, we exploit Azure’s support for

specifying regions for storing data to reduce data access

latency experienced by the HPC center. This approach is

illustrated in Figure 3(b). Here, the end-user can choose

to put the data in a particular part of the cloud that is

closer to the HPC center. In this use-case, although the

end-user may want to (eventually) store data on resources

that are farther from her site (closer to center), the Azure

management may hide the increased transfer latency from

the end-user by allowing data to be placed nearby and then

migrating it to the specified region transparently. If such

support is not available and higher transfer latencies are

exposed to the end-user, the user can choose to transfer the

data into the cloud much earlier to avoid delays and potential

job rescheduling if the HPC center needs the data before

the transfer is completed. Based on our interactions with

HPC users, we note that most users tend to start their data

transfers well in advance (sometimes on the order of days).

However, the cloud provides a better option for advance

transfers compared to moving data (well before job startup)

to the precious PFS on the center, where it can hinder the

center’s ability to service other currently running jobs.
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Figure 3. Different approaches for using the cloud to implement end-user data services.

One challenge in implementing this approach is how

the region specification can be made transparent to the

application. To this end, we assume that: (i) the end-user

(via collaborators) has multiple storage accounts in different

regions in the cloud; (ii) information is available in the

job script (as discussed earlier) to determine which region

a data item should be stored in; and (iii) the information

can be relayed to CATCH runtime. The runtime can then

utilize appropriate Azure API to accomplish region specific

storage. We note that region specification in Azure seems to

be static, thus a priori knowledge of where the data would

be consumed is needed. That said, most data consumption

locations can be derived from the HPC job scripts, so this

is not expected to be problematic. A bigger challenge is

that the granularity of the regions available in Azure is too

coarse, e.g., only a handful of regions (South Central US,

North Central US, and Anywhere US) are available for the

entire US. This could limit our ability to derive optimal

performance from our data transfer service.

3) Facilitating Dynamic Data Flow: Our main goal is

to develop a service that allows data to “flow” closer to

locations where it is needed, before it is accessed, so as

to reduce access latency. CATCH can benefit if individual

cloud storage locations and their performance were known.

However, the key cloud advantages of transparency and

decoupling of management from usage, pose a hurdle for

our approach. A set of distributed cloud storage resources

are not as configurable as a set of explicit collaborator sites

providing storage (such as those explored in our previous

work on decentralized HPC data transfers).

The CDN service provided by Azure can yield a more

dynamic and robust data transport than using regions, e.g.,

by caching data close to the HPC center. This is useful for

output data from HPC jobs as it would be consumed by

many collaborators, which provides enough repeat accesses

to the same data to enable the cloud mechanisms to optimize

data placement. However a CDN only improves performance

for repeat accesses, and as stated earlier, HPC input data is

often consumed once. We overcome this problem by utilizing

collaborator sites closer to the HPC center to pre-access

data before it is retrieved by the center, potentially triggering

CDN-enabled data migration. This will move the data closer

to the collaborator site. Since, the HPC center (or conversely

end-user) is also nearby, the intuition here is that accesses to

the data from the center when needed will thus experience

lower latency. This approach is illustrated in Figure 3(c).

In essence, by accessing the data from collaborator sites

closer to the center, the data is prefetched to high speed

CDN locations, making it readily available for the center

when needed. Note that pre-accessing the data does not

imply downloading the entire dataset. Rather, reading a few

random bytes in a blob is expected to do the trick (as the blob

is treated as a monolithic unit for CDN purposes), without

incurring the cost of reading large data from the cloud.

An alternative approach to using the CDN capability is

to leverage the availability of multiple cloud accounts, e.g.,

belonging to different collaborators and in cloud regions

that are close to them. The relative distance of collaborators

(in terms of available bandwidth) can be determined using

standard network monitoring, e.g., NWS [10], and the col-

laborators are then arranged on the end-to-end path from the

user to the HPC center. The end-user can then store the data

into his account and pass the appropriate access credentials

to the collaborators, who can then invoke copying of data

from one account to another. This would in essence move

the data closer to the HPC center. We note that this is a non-

standard use of the cloud API. However, the advantage is that

this approach allows for explicit monitoring, and can affect

the flow of data through the cloud at much finer granularity,

consequently, leading to improved HPC data transport.

C. Data Transport as a File System

In order for the entire end-user data delivery mechanism,

through the intermediate cloud storage nodes, to be trans-

parent both to the user as well as the HPC center, we put

forth an easy-to-use file system interface. In our design, the



client and center stubs talk to a transparent file system mount

point, provided through FUSE [8] as Cloud FS (Figure 1),

which abstracts the process of accessing the cloud storage

and in addition moves the data closer to the end-user or the

HPC center. The use of FUSE to abstract access to different

storage substrates has gained wide spread popularity due

to the ease with which purpose-built storage systems can

be transparently made available by having them implement

certain POSIX APIs (e.g., s3fs [15] for Amazon S3 or

stdchk [16], [17], a file system atop distributed storage of

disks, memory or SSD.) The read() or write() call

in these situations typically abstracts parallel striping or a

network transfer, respectively. The novelty of our approach

in Cloud FS, however, lies in the fact that we hide the data

transport behind a file system interface.

We have developed a scalable and robust FUSE-based

Cloud FS module to allow end-users and HPC center

management tools to access cloud storage. An in depth

discussion of Cloud FS, and how we use it to access cloud

storage is presented in Section IV. Here, we focus on how

the file system abstraction can serve to capture cloud data

flow. To this end, we augment the FUSE driver semantics

with the notion of data flow, in addition to the basic get

and put services (i.e., a write() call will also need to

implement methods necessary to propagate the data further

in addition to the standard network transfer required to store

the data in the cloud.) Such an approach not only allows us

to store data into the cloud, but also helps to migrate the

data towards its final destination.

The augmented module performs a number of functions.

(i) It has to negotiate access to the cloud storage. This is

achieved by providing Cloud FS a list of account credentials

at start up. This can be a single account or a list of creden-

tials to be used appropriately. To allow users to control what

credentials to use for data accesses through Cloud FS, we

provide an ioctl call to specify the identifier of credentials

to use. The credentials to use can be changed as often

as before each data access. However, typically the module

will automatically determine which account/region/location

to use as per the data transfer SLAs. (ii) The module

stores and retrieves the associated data chunks from the

cloud. To facilitate this, the source of the data, i.e., the

HPC center stub in offloading and client stub in staging,

maintains a mapping of dataset to chunks (and their locations

in the cloud). On an offload from the center, the client stub

can use the mapping information available at the center

stub to pull the necessary chunks of the datasets from

the Cloud FS. Similarly, for a staging from the end-user,

the client stub provides the location of the input dataset

chunks. (iii) The module may also have to probe different

intermediate locations to determine the best path to utilize.

One approach is to perform a number of small GET and PUT

operations on the cloud, and determine observed bandwidth,

which can then be used to select appropriate storage regions.

#PBS −N myjob

#PBS −l nodes =128 , w a l l t i m e =12:00

mpirun −np 128 ˜ / MyComputation

# C o l l a b A c c t c o l l a b 1 . b lob . c o r e . windows . n e t : 5 0GB

. . .

# C o l l a b A c c t c o l l a b N . b lob . c o r e . windows . n e t : 3 0GB

Figure 4. An example annotated job script.

Another approach, if the cloud service provider supports it, is

to use cloud monitoring services. This information can then

be used transparently to change storage regions and achieve

better flow rates. The module integrates such interactions

into the data flow, thus providing transparent services to

the users. Using the aforementioned fuse-based data flow

file system, the client and center stubs can orchestrate the

cloud intermediate nodes into multiple levels to move the

data closer to the destination.

D. HPC Job Submission Integration

We propose to specify the cloud accounts and those of

the collaborators as part of the user’s job submission script

(e.g., PBS [9]). Special directives can be used to annotate the

job script as shown in Figure 4. This way, the cloud storage

sites associated with the collaborators become an integral

part of the job and can be used by the center stub for the

end-user data delivery. End-users can further qualify the job

submission scripts with usage properties of the collaborator’s

account, e.g., how much storage to make available or what is

the load threshold. This information can then be used by the

stubs to derive how best to route data between each other.

E. Viability of Using Cloud Resources

An important consideration in the design of CATCH is the

cost of utilizing cloud resources. For example, transferring

tens of terabytes of data through the cloud multiple times

during the life of a single job may result in excessive

cloud charges, as cloud service providers often bill per unit

data transferred and stored. However, a number of factors

work in the favor of CATCH-like systems. First, the cost

of using cloud resources is falling sharply [18], and wider

adoption of cloud resources is likely to continue this trend.

One can argue that the amount of data being used is also

growing, and thus the impact of falling prices may be

negated. We note that the increase in data impacts both

centralized provisioning on HPC centers and cloud resource

provisioning similarly, and although crucial, should not be

a deciding factor in this context. Second, much like how

cloud computing is seen as a viable alternative for mid-

sized computing (e.g., jobs requiring a few thousand cores),

there is also a tipping point up to which cloud storage is

viable for HPC job data. We analyze these scenarios in our

evaluation. Further, our analysis of three years worth of logs

from the Jaguar supercomputer jobs [13], shows that there

exists a large number of jobs that are mid-sized, and do

not involve terabytes of data. These jobs can benefit from
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CATCH. Finally, the upfront costs of I/O management and

acquiring disks for large supercomputers may easily exceed

tens of millions of dollars. While, such costs can certainly be

amortized over the lifetime of an HPC center, it still cannot

retain job data beyond a certain window of time. CATCH

provides a way to complement such storage at relatively low

costs without high upfront costs.

IV. IMPLEMENTATION

We have implemented CATCH using about 2500 lines

of C# code with the Windows Azure [14] platform as the

cloud storage backend. Although our current implementation

utilizes Azure, our design is general enough to be interfaced

with other cloud service providers.

A. Architecture

The main components of CATCH are shown in Figure 5.

The Cloud FS, supported via FUSE, provides applications

with a transparent interface to CATCH. Once the application

data is written to a PFS, the center stub simply writes that

data to a special mount point, or performs ioctl calls

for control commands, and Cloud FS component converts

data access to operations on the cloud. The Scheduling

Monitor interacts with the center wide job scheduler or with

Batch Queue Prediction (BQP) [19] to determine when a

job completes or when it is likely to run. This information is

reported to the Transfer Manager, which uses it to determine

when to start a transfer. The Network Monitor determines

what cloud accounts provide the best transfer rates by

occasionally PUTing or GETing test blobs to the cloud and

measuring bandwidth. The Transfer Service component uses

the bandwidth and scheduling information to decide where

and when data should be stored to or retrieved from the

cloud. The Transfer Service then splits the data into chunks

and passes them to the Azure Request module. This module

is responsible for interfacing with the cloud storage service

and creates the appropriate HTML requests.

FUSE Module Interface: The architecture and the flow

control in our FUSE-based Cloud FS module is displayed

in Figure 6. When an I/O operation is performed on a file

in our mount point (step 1), it is redirected to the Cloud

FS module (2, 3, 4) by the FUSE runtime. Cloud FS then

processes the I/O to take appropriate cloud actions (5).
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Figure 6. Architecture of FUSE-based Cloud FS.

B. Data Operations

Access to the Windows Azure [14] Blob service is

achieved through a RESTful API, where all operations are

performed using HTTP requests. The Blob service provides

two types of blobs. (i) Block blobs are made up of “blocks”

that can each be of up to 4 MB, a block blob can have

up to 50,000 “blocks” providing a maximum blob size of

200 GB. Block blobs have commit-update semantics, i.e., a

number of blocks are first uploaded, and then another request

is sent to commit the changes. (ii) Page blobs, that we use

in CATCH due to their similar semantics to standard files,

consist of 512-byte regions and provide immediate or in-

place updates much like a traditional disk. They also have a

large maximum blob size of 1 TB. Each CATCH operation

corresponds to HTTP requests with particular query, headers,

and other parameters. In the following, we describe different

data functions supported in CATCH.
1) Storing Data: This operation is achieved using an

HTTP PUT request. In addition to the content of the data,

the request also includes information about the content

length and the particular region of the blob to write to, i.e.,

offset. With page blobs, the maximum request size is 4 MB

(consisting of contiguous 512 byte aligned regions). Files

larger than this are broken into chunks before being sent to

the cloud storage. Upon receiving the HTTP request, Azure

parses the request and stores the data.
2) Retrieving Data: Retrieving blob data is the inverse

operation of storing data, and is done using an HTTP GET

request. This request must also include a region of the blob

to read. If the request succeeds, the body of the response

will have the requested data. CATCH tries twice to read the

data before reporting an error to the application. The retry

mechanism is added to overcome trivial failures due to lost

messages or delayed response from Azure.
3) Data Flow: Center and client stubs need to use the

Cloud FS to orchestrate data flow. To provide these stubs

with options to control different cloud functions, we have

enabled a set of control knobs that can be set using ioctl

calls. The FUSE layer exposes a set of POSIX APIs that

any underlying system can implement to provide access to

its features. Unlike read() and write() calls, ioctl()

allows us to manipulate the underlying device parameters of

the special files. This provides us an elegant way to orches-



trate many sophisticated data flow operations on the cloud

storage, much beyond basic store and retrieve functionality.

Consider a case where the HPC center stub wants to

disseminate the chunks of a dataset to different geographic

regions to facilitate better data access to end-users. The

center stub first interacts with the client stub to determine

an appropriate data flow path. Let us assume that three

regions, R1, R2, and R3 can provide the best data flow,

and the credentials to use the regions are already available

to the Cloud FS. Before data is written to the cloud, the

center stub issues a “SET REGION” ioctl to Cloud FS

to indicate that the data should be written to R1, which

is done when the data is written. Then, CATCH decides

that data should be moved to R2. This copying of data is

initiated through a “COPY REGION” ioctl to Cloud FS.

This indicates that cloud service calls for moving data from

R1 to R2 should be issued. Another “COPY REGION”

call for moving data from R2 to R1 can also be issued

to move the data to R3. This completes the data flow.

The stubs can also use the interface to pass a pointer to

a configuration file or a structure containing one or more

account credentials. This information is passed to CATCH

and used for future data operations on a particular dataset

or mount point. Additionally, in the default configuration,

CATCH will measure bandwidth using probes to determine

the fastest accounts, but instead the client stubs may specify

in a structure the fraction of data to go to each account.

C. Real World Considerations

There are several factors that affect CATCH when it is

used to offload and stage data. Behind the Cloud FS mount

point, CATCH is utilized in coordination with the center

PFS as part of an integrated data service. This allows for the

HPC jobs to continue without being affected by the response

times of CATCH’s cloud interactions. In this scheme, data

is transferred from the cloud resources to the PFS before

its associated HPC applications are scheduled for execution.

Similarly, the jobs output data is buffered on PFS, which

is then offloaded to cloud sources asynchronously from job

execution and on-line data accesses.

Multi-Input Staging and Multi-Output Offloading: Our

implementation is capable of retrieving data from more than

just cloud resources, e.g., national data repositories, etc.,

and these other resources can also be incorporated into the

decentralized transfer. The data sources are provided as links

in the job-submission script. The transfer manager, through

the network monitor, uses small scale tests, e.g., partial

download or upload from a web repository, to determine

expected transfer times and make staging and offloading

decisions. In case of staging, the goal is to ensure staging of

all input data from all sources completes before the predicted

job startup time. For offloading, the goal is send the data

as quickly as possible, so in the event that the additional

resource is slow, it will not be utilized.

V. EVALUATION

In this section, we present an evaluation of CATCH using

both our implementation of Section IV and an analysis

driven by three-year job-statistics logs from the Jaguar [5]

supercomputer. We also compare our results to the popular

direct transfer techniques that are the default approach for

transferring data in many HPC centers.

A. Implementation Results

For our implementation experiments, we use the Azure

Cloud storage service to study the effectiveness of our end-

user data delivery service in a true distributed environment.

We created 5 Azure storage accounts in the following

regions: Anywhere US, North Central US, South Central US,

Anywhere Europe, and Anywhere Asia. While there are a

few more regions provided by Azure, this selection provides

a representative and geographically dispersed testbed for our

experiments. For the following experiments, we only con-

sider one explicit level of intermediate storage accounts, i.e.,

data is pushed from the source (either HPC center or end-

user site) into the cloud, and is then pulled from the cloud

onto the destination. In contrast, multiple levels are created

when data is moved between different accounts before being

transferred to the destination. The setup consists of the HPC

center, the cloud accounts, and a client. The roles of the

HPC center and the client are provided by a lab machine

at Virginia Tech and a remote node running on Amazon’s

EC2 [20]. For all experiments data is pushed to the cloud,

by either the HPC center or client and then retrieved by the

other role. In the following, the presented results represent

averages over a set of three runs.

1) Probes to Cloud Resources: A crucial component of

CATCH is the ability to dynamically adjust to changing

network capabilities as data is staged or offloaded. Since the

cloud is a black box, we determine the best sites for storing

the data by directly measuring the data rates we can obtain.

In our first experiment, we determine the effectiveness of

probing the cloud. To this end, we send a 4 MB dummy

blob to each of the regions considered in this study, and

measure the time it takes to either PUT or GET the blob.

The results are shown in Table I. We make two observations

from the results. (i) There is a marked difference between

the measured test blob access times to different regions.

This is promising as CATCH can use such measurements

to guide its data transport, without worrying about Azure

hiding such details. (ii) This also shows that the regions

are in fact distinct and provide different throughputs. Thus,

if data is moved to a region closer to its final destination,

better transfer times will be observed on the on-demand

data access. Overall the transfer times and transfer rates to

data centers in the US provide the best probe times for our

location. The data center in Europe is sometimes faster, but

in the worst case it is only slightly slower. From our location



Table I
AVERAGE OBSERVED BANDWIDTH AND TRANSFER TIMES FOR A 4 MB PROBE TO DIFFERENT AZURE REGIONS.

Regions Anywhere US North Central US South Central US Anywhere Europe Anywhere Asia
(Mb/s) (s) (Mb/s) (s) (Mb/s) (s) (Mb/s) (s) (Mb/s) (s)

Put 4.7 7.2 4.2 8.0 4.9 6.9 3.4 10.0 2.5 13.2
Get 5.4 6.2 3.2 10.5 6.2 5.4 4.2 7.9 1.7 19.8

Table II
THE TIME TO TRANSFER A 1 GB FILE USING MULTIPLE

REGIONS.

Threads
Number of regions 8 16

Write Read Write Read
2 547 544 520 548
3 592 593 588 672

the slowest region is in Asia. This is expected as this region

is provided to be primarily accessed by people close to Asia.

2) Effect of Multiple Transfer Streams on Access Times:

During our previous experiments we observed that Azure

is capable of handling many simultaneous requests, which

can provide high aggregate throughput. To take advantage of

this ability we designed CATCH to utilize multiple streams

for transferring data simultaneously. In our next set of

experiments, we demonstrate the effect of using multiple

streams on transfer rates from Azure. In this experiment,

only one region is used for each transfer, and the number of

simultaneous streams varies from 1 to 32. The file size used

for testing the transfer rate is 1 GB. Figure 7 shows the times

for data transfer from client to the cloud (Write (a)), and the

cloud to the HPC center (Read (b)) under different number of

simultaneous streams. Compared to a transfer with a single

stream, the multi-stream staging and offloading can reduce

the last-hop transfer times by up to 88.1% and 91.3% for

reading and writing, respectively. Another observation is that

using between 8 and 16 streams offer the best performance

overall for our setup. Utilizing more streams results in a

bottleneck on our emulated end-user site and HPC center.

While this result will hold for a typical end-user site, we

believe the HPC center can use many more simultaneous

streams without suffering from performance degradation.

This is promising in that it shows that CATCH can help

reduce the data staging times even more when used at a real

HPC center.

This result also implies that using multiple streams can

delay copying of data to and from scratch space by a factor

of 4.3 on average across the studied stream counts, and still

get the data to the center in time for the job to start. Thus, it

reduces the time the scratch space has to hold the data before

it is used, i.e., the exposure window (Ew), consequently,

improving center serviceability.

3) Effect of Using Multi-Region Access: In our next ex-

periment, we repeat the probe-test from our first experiment

but for accesses to multiple regions. Table II shows the times

Table III
COMPARISON OF DECENTRALIZED TRANSFER TIMES (IN SECONDS)

WITH DIFFERENT DIRECT TRANSFER TECHNIQUES. THE BUFFER SIZE

FOR IBP, GRIDFTP, AND BBCP IS SET TO 1 MB. THE NUMBER OF

STREAMS IN GRIDFTP, BBCP, AND CATCH IS SET TO 8, 16, AND 16,
RESPECTIVELY.

CATCH
Write (Offload) 520

Read (Pull) 548
Direct

scp 2821
IBP 1791

GridFTP 722
BBCP 573

taken to transfer a 1 GB file to 2 and 3 different regions

using CATCH. Data movement between the different regions

is accomplished in CATCH by orchestrating data flows

between different accounts through the FUSE abstraction.

CATCH actively probes the cloud regions before and during

the transfer to determine the fastest regions. In these cases,

regions in the United States were utilized due to their

higher bandwidth. The experiment was performed using

8 and 16 streams since both of these scenarios provided

good performance in the previous experiment. Compare

these to the transfer times shown earlier in Figure 7: multi-

region Write and multi-region Read out-perform the standard

write and read significantly (up to 43.8%) for all regions

except for North Central US which has very similar times.

This performance improvement was very consistent across

runs. These results show that active bandwidth monitoring

provides a good tool for improving transfer times.

4) Comparison with Direct Transfer Methods: For our

next experiment, we utilized our 5 cloud storage accounts

coupled with 5 PlanetLab [21] nodes to create a distributed

testbed for comparing different HPC data movement tech-

niques with CATCH. A more detailed description of our

PlanetLab experimental setup can be found in [11].

Info About Transfer Programs: We compared several

point-to-point direct transfer tools that are prevalent in HPC:

(i) scp, a baseline secure transfer protocol; (ii) IBP [22], an

advanced transfer protocol that makes storage part of the

network, and allows programs to allocate and store data in

the network near where they are needed; (iii) GridFTP [7],

an extension to the FTP protocol, which provides authentica-

tion, parallel transfers, and allows TCP buffer size tuning for

high performance; and BBCP [23], which also provides high

performance through parallel transfers and TCP buffer tun-
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Figure 7. Transfer times (in seconds) to different cloud regions, using increasing numbers of streams. The file size used is 1 GB.

Table IV
STATISTICS ABOUT THE JOB LOGS USED IN THE SIMULATION

STUDY.

Duration 22753 Hrs

Number of jobs 80025

Job execution time 30 s to 120892 s, average 5849 s

Input data size 2.28 MB to 7481 GB, average 65.3 GB

ing. Note that these protocols are all typically supported [24]

by HPC centers such as Jaguar [5].

Table III shows the result. One important point to note

here is that while direct transfer methods include the flow

of data from source to destination, CATCH Read and Write

numbers only include either storing the data into the cloud

or retrieving the data from the cloud. In the best case for

CATCH, a Read can begin as soon as initial part of a

dataset becomes available by a Write. The overall end-to-

end transfer time can then be calculated as maximum of

Read and Write times: 548 seconds in our case. In the

worst case, there may be an arbitrary wait between the Read

and Write operations. However, from the center point of

view, only the time it has to stay engaged in the transfer

is critical, as communication between the cloud and the

end-user site is decoupled from the center. Current point-

to-point transfer tools cannot enable this behavior as they

expect a significant resource commitment from end-users

and HPC centers for the duration of the transfer. Thus,

only the access times to/from cloud are of concern. It can

be observed that from this perspective, CATCH is able

to achieve 6.8% (wrt. BBCP) to 81.1% (wrt. scp) better

performance compared to direct transfer mechanisms on

average across both Read/Write operations. These results

suggest that CATCH is a viable option for HPC end-user

data services.

B. Simulation

In this section, we study the performance of timely staging

using job-statistics logs collected over a period of three-

years on the Jaguar [5] supercomputer. Table IV shows some

relevant characteristics of the logs.
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Figure 8. Scratch savings under CATCH compared to direct scp,
calculated per hour. Purge period is seven days.

To analyze the logs, we have developed a simulator that

captures the design of our setup. The simulator models job

queuing, scheduling, batch-queue prediction, job execution

times, and provides data about scratch space usage and delay

in meeting deadlines. It also models distributed intermediate

nodes, their bandwidth variations and decentralized data

staging. It uses the connectivity values from the cloud and

plays the periodic snapshot of bandwidth measurements to

emulate volatility. In the following, we use this simulator to

gain insights into end-user data services.

1) Impact on Scratch Space Usage: In this experiment,

we quantify the impact of decentralized transfers on scratch

space usage. We play the logs in our simulator and determine

the amount of scratch used both under scp-based direct

transfer and CATCH. For this test, we assume that the

scratch is empty at the beginning, and has perfect infor-

mation about when the data will be used by the job, i.e.,

job start up time is known. Moreover, the center is setup for

weekly purges of the scratch space and the maximum center

in-bound bandwidth is limited to 10 Gb/s. Only input data is

considered, and a data item is only purged if its associated

job has completed. Figure 8 shows the average savings per

hour in scratch space usage by CATCH. It can be seen that

CATCH is able to provide up to 45.3% in scratch savings.



Table V
CURRENT AZURE PRICING.

Storage $0.15/GB
CDN $0.15/GB

Transfer $0.10/GB

Table VI
COST OF USING CATCH FOR DIFFERENT WORKFLOWS UNDER

VARYING PRICING STRUCTURE.

A B C D
Data size 50 TB 10 TB 1 TB 500 GB

CDN usage Yes No Yes No
Num. uploads 1 1 1 1

Downloads 10 10 5 10

Cost (current) $70,000 $12,500 $900 $625
Cost (90%) $63,000 $11,250 $810 $563
Cost (50%) $35,000 $6,250 $450 $313
Cost (10%) $7,000 $1,250 $90 $63

We also calculated the average savings per hour across the

entire log, and found that CATCH uses 2.43% less scratch

per unit of time (e.g. 24.9 GB/Hr on average per Terabyte of

storage) compared to direct. Thus, CATCH offers a viable

means for conserving precious scratch resource.

2) Effect on Exposure Window: In the next experiment,

we repeat the previous experiment, but now study the

exposure window (Ew), i.e., duration for which the data has

to wait on the scratch before the associated job is run. We

found that for 30.7% of the jobs, CATCH was effectively

able to reduce Ew to zero, and for the remaining jobs it

reduced Ew by 64.2%, i.e., 75.2% reduction on average

across all jobs. Moreover, Ew was reduced by at least a

factor of 10 for 48.3% of the jobs. Overall, the significantly

reduced Ew for most jobs under CATCH shows that it can

provide better resiliency against storage system failures and

costly re-staging.

C. Cost of Cloud Usage

In the next experiment, we determine how the cost of

cloud services impact CATCH usage. Table V shows the

current pricing structure used by Azure [18]. Table VI shows

three different usage scenarios for HPC application work-

flows, and the cost for using CATCH for the applications. To

give a sense of the scale of the job that produces terabytes

of data, consider that a 100,000-core run of GTS fusion

application on Jaguar produces a 50 TB dataset. Since the

pricing for cloud usage are expected to fall, the Table also

shows the cost of using CATCH if the prices are reduced by

10%, 50%, and 90%. In contrast, consider that in a typical

HPC center, I/O subsystem costs can account for 20% to

30% of the acquisition cost and may run into millions of

dollars. Even though the acquisition cost is amortized over

the life of a machine, the annual running costs can still run

into millions of dollars. While such PFS storage is needed

at the center for a quick dump of job data, it cannot retain

the data beyond a purge window, let alone the duration of a

collaboration. Thus, CATCH provides a way to complement

storage at the HPC center, especially for mid-size HPC

applications.

VI. RELATED WORK

The use of intermediate buffers to hide latency is used in

Kangaroo [25] for Grid computing, with the goal to provide

reliability against transient resource availability. However,

Kangaroo simply provides a staged transfer mechanism and

does not concern itself with network vagaries or changing

route dynamics in an end-to-end data path.

The GridFTP overlay network service [26], [27] imple-

ments a specialized data storage interface (DSI) to achieve

split-TCP functionality. IBP [22] offers a data distribution

infrastructure with a set of strategically placed resources

(storage depots) to move data, and implement what is re-

ferred to as logistical networking. Our approach of providing

a file system view of the data transport is similar to IBP’s

logistical networking and exNodes. The main difference

between these approaches and ours is that instead of relying

on specialized resources, we leverage general-purpose cloud

resources to achieve end-user data delivery.

Stork [28], a scheduler for data placement activities in a

grid environment, is used to schedule data and computation

together. However, these systems still use point-to-point

transfer tools. Consequently, these solutions cannot address

network volatility either.

A number of systems such as Bullet[29], [30], Shark [31],

CoDeeN [32], and CoBlitz [33] have explored the use of

multicast and p2p-techniques for transferring large amounts

of data between multiple Internet nodes. The focus of these

systems is on downloading of user data, or receiving multi-

media streams. HPC end-user delivery requires factoring in

center-user service agreements and dynamic cloud resource

availability, which are not considered in these systems. Our

work shares with these systems the goal of utilizing multiple

paths for transferring large amount of data, but differs in

its focus on HPC applications and use of cloud nodes for

intermediate storage.

VII. CONCLUSION

In this paper, we have presented the design and imple-

mentation of a decentralized end-user data transport service,

CATCH, for HPC. The novelty of our approach lies in the

transparent use of cloud storage resources as intermediate

nodes, and bringing such resources to bear on the timely

problem of HPC data delivery. To this end, CATCH provides

a FUSE-based file system abstraction to the decentralized

data flow through the cloud storage substrate. Using this

backdrop, we present several techniques to improve the end-

user data delivery experience, by bringing data closer to the

HPC center or the user so the data can be pulled eventually

as needed to coincide job startup or a workflow deadline, re-

spectively. CATCH exploits several desirable characteristics



such as disseminating chunks to a geographically distributed

set of locations, and extends them further, all in a seamless

fashion to HPC users.
Our tools are integrated with real-world HPC tools such

as PBS, batch-queue prediction, and several popular HPC

point-to-point tools. Our results indicate that CATCH is

able to: exploit orthogonal network bandwidth and adapt to

network conditions, e.g., CATCH reduces average transfer

times compared to direct transfers by as much as 81.1%;

reduce exposure to scratch failures, e.g., 75.2% reduction in

wait time on scratch; and mitigate the high cost of HPC I/O

acquisition, especially for mid-size HPC workflows.
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